- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Chipilski, Hristo G. (2)
-
Johnson, Aaron (2)
-
Parsons, David B. (2)
-
Wang, Xuguang (2)
-
Adams-Selin, Rebecca D. (1)
-
Bao, Feng (1)
-
Chipilski, Hristo G (1)
-
Degelia, Samuel (1)
-
Degelia, Samuel K. (1)
-
Geerts, Bart (1)
-
Haghi, Kevin R. (1)
-
Imy, David (1)
-
Liang, Siming (1)
-
Liu, Siyan (1)
-
Lu, Dan (1)
-
Turner, David D. (1)
-
Yin, Junqi (1)
-
Zhang, Guannan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 17, 2025
-
Chipilski, Hristo G.; Wang, Xuguang; Parsons, David B.; Johnson, Aaron; Degelia, Samuel K. (, Monthly Weather Review)Abstract There is a growing interest in the use of ground-based remote sensors for Numerical Weather Prediction (NWP), which is sparked by their potential to address the currently existing observation gap within the Planetary Boundary Layer (PBL). Nevertheless, open questions still exist regarding the relative importance of and synergy among various instrument types. To shed light on these important questions, the present study examines the forecast benefits associated with several different ground-based profiling networks using 10 diverse cases from the Plains Elevated Convection at Night (PECAN) field campaign. Aggregated verification statistics reveal that a combination of in situ and remote sensing profilers leads to the largest increase in forecast skill, both in terms of the parent mesoscale convective system and the explicitly resolved bore. These statistics also indicate that it is often advantageous to collocate thermodynamic and kinematic remote sensors. By contrast, the impacts of networks consisting of single profilers appear to be flow-dependent, with thermodynamic (kinematic) remote sensors being most useful in cases with relatively low (high) convective predictability. Deficiencies in the data assimilation method as well as inherent complexities in the governing moisture dynamics are two factors shown to limit the forecast value extracted from such networks.more » « less
-
Haghi, Kevin R.; Geerts, Bart; Chipilski, Hristo G.; Johnson, Aaron; Degelia, Samuel; Imy, David; Parsons, David B.; Adams-Selin, Rebecca D.; Turner, David D.; Wang, Xuguang (, Bulletin of the American Meteorological Society)Abstract There has been a recent wave of attention given to atmospheric bores in order to understand how they evolve and initiate and maintain convection during the night. This surge is attributable to data collected during the 2015 Plains Elevated Convection at Night (PECAN) field campaign. A salient aspect of the PECAN project is its focus on using multiple observational platforms to better understand convective outflow boundaries that intrude into the stable boundary layer and induce the development of atmospheric bores. The intent of this article is threefold: 1) to educate the reader on current and future foci of bore research, 2) to present how PECAN observations will facilitate aforementioned research, and 3) to stimulate multidisciplinary collaborative efforts across other closely related fields in an effort to push the limitations of prediction of nocturnal convection.more » « less
An official website of the United States government
